35 research outputs found

    Aggressive gastric carcinoma producing alpha-fetoprotein: a case report and review of the literature.

    Get PDF
    A 65-year-old man presented to our hospital with abdominal pain, dyspepsia and anorexia. Laboratory tests showed an altered liver function and abdomen ultrasonography revealed multiple liver nodules, suspected to be metastatic lesions. Serous tumor markers were elevated and a very high level of alpha-fetoprotein was found. Computer tomography confirmed the hepatic lesions and disclosed a thickening of the lesser curvature of the gastric wall. A subsequent endoscopy showed an ulcer on the lesser curvature. Biopsies taken from the gastric ulcer and the liver nodule revealed an adenocarcinoma, both of gastric origin. Shortly after the diagnosis, the patient's condition worsened and he died only 15 days later. This case report illustrates how alpha-fetoprotein-producing gastric adenocarcinomas have a high incidence of venous and lymphatic invasion and a rapid hepatic spread with a very poor prognosis

    Monocular Robust Depth Estimation Vision System for Robotic Tasks Interventions in Metallic Targets

    Get PDF
    Robotic interventions in hazardous scenarios need to pay special attention to safety, as in most cases it is necessary to have an expert operator in the loop. Moreover, the use of a multi-modal Human-Robot Interface allows the user to interact with the robot using manual control in critical steps, as well as semi-autonomous behaviours in more secure scenarios, by using, for example, object tracking and recognition techniques. This paper describes a novel vision system to track and estimate the depth of metallic targets for robotic interventions. The system has been designed for on-hand monocular cameras, focusing on solving lack of visibility and partial occlusions. This solution has been validated during real interventions at the Centre for Nuclear Research (CERN) accelerator facilities, achieving 95% success in autonomous mode and 100% in a supervised manner. The system increases the safety and efficiency of the robotic operations, reducing the cognitive fatigue of the operator during non-critical mission phases. The integration of such an assistance system is especially important when facing complex (or repetitive) tasks, in order to reduce the work load and accumulated stress of the operator, enhancing the performance and safety of the mission

    Cooperative and Multimodal Capabilities Enhancement in the CERNTAURO Human–Robot Interface for Hazardous and Underwater Scenarios

    Get PDF
    The use of remote robotic systems for inspection and maintenance in hazardous environments is a priority for all tasks potentially dangerous for humans. However, currently available robotic systems lack that level of usability which would allow inexperienced operators to accomplish complex tasks. Moreover, the task’s complexity increases drastically when a single operator is required to control multiple remote agents (for example, when picking up and transporting big objects). In this paper, a system allowing an operator to prepare and configure cooperative behaviours for multiple remote agents is presented. The system is part of a human–robot interface that was designed at CERN, the European Center for Nuclear Research, to perform remote interventions in its particle accelerator complex, as part of the CERNTAURO project. In this paper, the modalities of interaction with the remote robots are presented in detail. The multimodal user interface enables the user to activate assisted cooperative behaviours according to a mission plan. The multi-robot interface has been validated at CERN in its Large Hadron Collider (LHC) mockup using a team of two mobile robotic platforms, each one equipped with a robotic manipulator. Moreover, great similarities were identified between the CERNTAURO and the TWINBOT projects, which aim to create usable robotic systems for underwater manipulations. Therefore, the cooperative behaviours were validated within a multi-robot pipe transport scenario in a simulated underwater environment, experimenting more advanced vision techniques. The cooperative teleoperation can be coupled with additional assisted tools such as vision-based tracking and grasping determination of metallic objects, and communication protocols design. The results show that the cooperative behaviours enable a single user to face a robotic intervention with more than one robot in a safer way

    MiniCERNBot Educational Platform: Antimatter Factory Mock-up Missions for Problem-Solving STEM Learning

    Get PDF
    Mechatronics and robotics appeared particularly effective in students’ education, allowing them to create non-traditional solutions in STEM disciplines, which have a direct impact and interaction with the world surrounding them. This paper presents the current state of the MiniCERNBot Educational Robotic platform for high-school and university students. The robot provides a comprehensive educative system with tutorials and tasks tuned for different ages on 3D design, mechanical assembly, control, programming, planning, and operation. The system is inspired to existing robotic systems and typical robotic interventions performed at CERN, and includes an education mock-up that follows the example of a previous real operation performed in CERN’s Antimatter Factory. The paper describes the learning paths where the MiniCERNBot platform can be used by students, at different ages and disciplines. In addition, it describes the software and hardware architecture, presenting results on modularity and network performance during education exercises. In summary, the objective of the study is improving the way STEM educational and dissemination activities at CERN Robotics Lab are performed, as well as their possible synergies with other education institutions, such as High-Schools and Universities, improving the learning collaborative process and inspiring students interested in technical studies. To this end, a new educational robotic platform has been designed, inspired on real scientific operations, which allows the students practice multidisciplinary STEM skills in a collaborative problem-solving way, while increasing their motivation and comprehension of the research activities

    Further teleoperated experiments with an underwater mobile manipulator via acoustic modem: modem characterization

    Get PDF
    In this study, we conducted preliminary experiments to characterize an acoustic sonar [1][2] for underwater communication. We carried on image transmission experiments and attempted to reduce reflections using insulating cork. Moving the buoy along the surface revealed the central area of the tank to have the best communication with Girona. We plan to conduct further experiments with the acoustic modem in a realistic environment. In addition, we are also testing Visible Light Communication (VLC) [3] optical modems, which yielded better results than the acoustic modem. We aim to develop a multimodal system for improved communication under different environmental conditions.Peer Reviewe

    Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation

    Get PDF
    Memory stem T cells (TSCM) have been proposed as key determinants of immunologic memory. However, their exact contribution to a mounting immune response, as well as the mechanisms and timing of their in vivo generation, are poorly understood. We longitudinally tracked TSCM dynamics in patients undergoing haploidentical hematopoietic stem cell transplantation (HSCT), thereby providing novel hints on the contribution of this subset to posttransplant immune reconstitution in humans. We found that donor-derived TSCM are highly enriched early after HSCT. We showed at the antigen-specific and clonal level that TSCM lymphocytes can differentiate directly from naive precursors infused within the graft and that the extent of TSCM generation might correlate with interleukin 7 serum levels. In vivo fate mapping through T-cell receptor sequencing allowed defining the in vivo differentiation landscapes of human naive T cells, supporting the notion that progenies of single naive cells embrace disparate fates in vivo and highlighting TSCM as relevant novel players in the diversification of immunological memory after allogeneic HSCT

    Report from Working Group 3: Beyond the standard model physics at the HL-LHC and HE-LHC

    Get PDF
    This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High Luminosity (HL) phase of the LHC, defined as 33 ab1^{-1} of data taken at a centre-of-mass energy of 14 TeV, and of a possible future upgrade, the High Energy (HE) LHC, defined as 1515 ab1^{-1} of data at a centre-of-mass energy of 27 TeV. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by 2050%20-50\% on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will, generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics

    Patient Active Approaches in Osteopathic Practice: A Scoping Review

    No full text
    Background: In the field of manual therapies there is a growing interest in moving from passive hands-on approaches to patient active approaches. In the osteopathic field there are both active and passive methods described as integrated in the process of care. However, this prospective linkage has not been formally explored and is not well shared in the community of practice. The present review aims to appraise the relevant literature on the functioning and principles of Patient active osteopathic approaches (PAOAs) and explore a prospective model for selecting the different types of PAOA, highlighting their integration into patient management strategies. Methods: A scoping review was conducted to analyze the relevant literature on the functioning and the different principles of PAOA and to obtain a comprehensive perspective on the phenomenon. Results: The eligible articles provide insights into the mechanisms of functioning and principles of application of active approaches to be integrated with hands-on approaches. These results provide new insights into the relevance of PAOA to clinical practice. Conclusions: The proposal, emerging from the review, may promote discussions in the community of practice and provide a road map for research towards achieving an evidence-based structure for PAOA

    Multimodal Human-Robot Interface for Accessible Remote Robotic Interventions in Hazardous Environments

    No full text
    Human-Robot Interfaces have a key role in the design of secure and efficient robotic systems. Great effort has been put during the past decades on the design of advanced interfaces for domestic and industrial robots. However, robots for intervention in unplanned and hazardous scenarios still need further research, especially when the mission requires the use of multiple robotic systems, to obtain an acceptable level of usability and safety. This paper describes the design and the software engineering process behind the development of a modular and multimodal Human-Robot Interface for intervention with a cooperative team of robots, as well as its validation and commissioning, as it is being used in real operations at CERN's accelerators complex. The proposed Human-Robot Interface allows the control of a heterogeneous set of robots homogeneously, providing the operator, among other features, with live scripting functionalities which can be programmed and adapted in run-time, for example, to increase operator's multi-tasking in a multi-agent scenario. The operator is given the capability to enter in the control loop between the HRI and the robot and customize the control commands according to the operation. To provide such functionalities, well-defined software development approaches have been adopted, for guaranteeing the modularity and the safety of the system during its continuous development. The paper describes the modules offered by the HRI, such as the multimodality, multi-robot control, safety, operators training, and communications architecture, among others. The HRI and the CERN Robotic Framework where it belongs are designed in a modular manner, in order to be able to adapt both, software and hardware architecture in a short time, to the next planned mission. Results present the experience gained with the system, demonstrating a high level of usability, learnability and safety when operated by both, non-experts and qualified robotic operators. The multimodal user interface has demonstrated to be very accurate and secure, providing a unique system to control, in a teleoperated or supervised manner, both single and multiple heterogeneous mobile manipulators. At the moment of writing, the user interface has been successfully used in 100 real interventions in radioactive industrial environments. The presented HRI is a novel research contribution in terms of multimodality, adaptability and modularity for mobile manipulator robotic teams in radioactive environments, especially for its software architecture, as part of the CERN Robotic Framework
    corecore